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Liesegang Rings and a Theory of Fast
Reaction and Slow Diffusion

Joseph B. Keller

1. INTRODUCTION.

A chemically reacting system usually proceeds mono-

tonically in time toward a state of completed reaction, a

state of equilibrium, or a steady state. The ultimate state

is generally homogeneous in space, as a consequence of diffu-

sion, even though the initial state may be inhomogeneous.

Therefore it is surprising that certain chemical systems do

not behave in this way. Instead some of them exhibit temporal

oscillations which do not decay in time, but which become

temporally periodic. Other systems, or the same systems with

different parameter values, perform oscillations which persistO0

but remain chaotic rather than becoming periodic. Still

others reach steady--states which are not homogeneous in space,

but which are spatially periodic or quasi-periodic. There are

also systems which continue to oscillate in time and to be

quasi-periodic in space.

Examples of such unusual behavior of chemically reacting

systems have been known for a long time. One of them was dis-

covered by R. E. Liesegang [1) in 1896 and studied by him for

many years thereafter. The spatial pattern which occurs in
C this system consists of a family of concentric circular rings

which are called Liesegang rings in his honor. It is this

system and similar ones which we shall examine. In order to

analyze them, first we shall have to describe in detail the

physical and chemical processes which occur. This we shall do

following the ideas of W. Ostwald [2] who, in 1897, outlined mO
Cfoo wi I Acng hu. b
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212 J. B. KELLER

an explanation involving precipitation and supersaturation.

We shall extend that outline to a complete description of the

various processes. Then we shall convert this verbal descrip-

tion into a mathematical theory, and formulate an appropriate

mathematical problem corresponding to it. All of these con-

siderations, and the subsequent analysis of the problem, are

the joint work of S. I. Rubinow and the author, and are pre-

sented in greater detail in their paper [3].

In order to treat the mathematical problem we shall make

certain appropriate simplifications. The most important of

these is a consequence of the fact that the reaction process

is fast compared to the diffusion process. This has led us to

formulate and develop a general theory of reaction and diffu-

sion processes involving fast reaction and slow diffusion. We

shall describe this theory, which should have many other

applications, and use it to simplify the present problem. It

was worked out by P. S. Hagan and the author, and is contained

in their paper [4] together with the related theory of some

fast and some slow reactions.

The subsequent analysis of the simplified problem is

carried out in [3] employing approximations like those in the

related work of C. Wagner [5], S. Prager [6] and Zeldovich,

Barenblatt and Salganik [7]. Some predictions of the theory

are compared in [3] with certain relevant experimental results.

More detailed comparison between theory and experiment will be

possible when the equations of the theory are solved

numerically. J.-M. Vanden-Broeck and the author [8] are

solving them by using the method of finite differences to re-

place the partial differential equations by a finite set of

algebraic equations. These equations, together with the

initial, boundary, and jump conditions, are being solved by an

appropriate iterative method.
Before turning to the study of Liesegang rings, we shall

comment on the periodic -r non-monotonic behavior of chemical

systems in general. Let us first consider why chemical reac-

tions are expected to proceed monotonically in time. The

reason is that the rate of reaction is positive as long as the

concentrations of the reactants are positive and the concen-

tration of the reaction products is not too large. Furthermore

Ii
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there is no mechanism, such as inertia, to cause the reaction

to overshoot the equilibrium state or the state of completed

reaction. Therefore it is to be expected that a reaction will

proceed in one direction at a decreasing rate. However when

several reactions occur, there is no longer any justification
for this belief. The presence of other processes, such as

flow and diffusion, can also lead to destabilization of uni-
form steady states and the occurrence of temporal or spatial

periodicity.

The interest in periodic and non-uniform states of reac-

ting systems has been generated by scientific curiosity, by

engineering necessity, and by potential applications in

biology. The engineering reason is the need to control and

eliminate oscillations which arise in stirred tank and other

continuous flow reactors. The biological reasons include the

possible explanation of biological clocks and a proposed ex-
planation of morphogenesis. The latter of these, made by

A. M. Turing in 1952, is that chemical reaction and diffusion

are responsible for the creation of form in biological systems

through the development of spatially nonuniform steady states.

All of these reasons have led to extensive experimental and

theoretical investigations of the non-monotonic and non-uniform

behavior of chemical systems.

2. THE MECHANISM OF LIESEGANG RING FORMATION.

Liesegang, while experimenting with photographic

materials, prepared a gel containing potassium dichromate.

This gel was in the form of a thin layer on a glass plate. He

placed a drop of silver nitrate solution on the gel and found,

after some time, that concentric circular rings of silver

chromate formed in the gel. The process whereby the silver

chromate formed into visible solid particles is precipitation,

so this phenomenon has sometimes been called "periodic
precipitation. However it is not periodic in either space or 0

time, so that is a misnomer. We prefer to call it recurrent

precipitation, since the rings form one after another with in-

creasing spatial and temporal intervals between successive

rings.

A _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _,

*



214 J. B. KELLER

To explain this phenomenon we suppose that silver ions

from the drop go into solution in the gel and diffuse

radially outward. Within the gel they encounter chromate ions

and react with them to form silver dichromate. As the

chromate ions near the drop are consumed by the reaction, more

chromate ions diffuse radially inward. Thus the two reactants

diffuse toward one another and, upon coming together,

continually produce silver dichromate. In this way an

expanding circular region of silver dichromate is produced.

This is the monotonic behavior to be expected in chemically

reacting systems. The question then arises of why only

separated rings of silver dichromate are visible at the end of

the experiment?

To answer this question we assume that the silver

dichromate is not visible until it precipitates out of solu-

tion and forms solid particles. Now it is well known that a

dissolved substance cannot precipitate until its concentration

c exceeds the saturation concentration cs . Then the rate of

precipitation is proportional to c - cs , provided that some of

the solid is present upon which it can precipitate. However
if none of the solid is present the concentration c may have

to reach a higher value c* > cs before precipitation can start.

Therefore, following Ostwald, we assume that precipitation

starts only when c > c*. After it has started, we assume that

it continues as long as c > cs .

In view of these assumptions, precipitation will begin in

the gel at the location of the drop of silver nitrate solution,

provided that the reactants are present in sufficiently high

concentrations to produce silver dichromate with a concentra-

tion c > c*. Precipitation will continue within a circle of

increasing radius surrounding the drop until c falls below c*

at the outer boundary of this circle. Then the precipitation

zone will stop growing.

The reason why c may fall below c* is that the chromate

ions in the gel are depleted by reaction and by diffusion

toward the silver nitrate drop, while the concentration of
silver ions is low far from the drop. As time goes on this

latter concentration increases everywhere. A time may be

reached when this silver ion concentration and that of the
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chromate ions is high enough somewhere in the gel to produce

silver dichromate with a concentration c > c*. Then a second

zone of precipitation will start to form at that place. After

a while this process will be repeated, forming a third zone,

and so on. The resulting zones are the Liesegang rings.
Since Liesegang's first experiment, the same phenomenon

has been found to occur in many other reactions. Furthermore,
it has also been shown to occur in test tubes and capillary

tubes, with the formation of planar bands at various positionsr along the tube 4-:tead of rings. It is this one dimensional

case which we shal± treat.

3. A MATHEMATICAL FORMULATION OF THE THEORY.

To formulate the preceding theory mathematically, we

denote by a, b, c and d the molar concentrations of the four

substances A, B, C and D. Here A is analogous to the silver

ions, B to the chromate ions, C to the dissolved silver

dichromate and D to the solid or precipitated silver dichro-

mate. We assume that vA moles of A can combine with v B moles

of B to form vC moles of C, and that this reaction is rever-

sible. We also assume that C can precipitate to form D, but

that D cannot dissolve to form C. In addition we suppose that

A, B and C can diffuse with diffusion coefficients DA, DB and

DC, but that D cannot diffuse. Then the four concentrations,

which depend upon the time t and the coordinate x along the

tube, satisfy the following reaction-diffusion-precipitation

equations within the tube x > 0:

at = DAaxx - vAr , (3.1)

bt = DBbxx - vBr , (3.2)

ct = DcCxx + Vcr - p(c,d) , (3.3)

dt = p(c,d) . (3.4)

Here r is the reaction rate and p is the precipitation rate.

We shall assume that r is given by the law of mass action

with rate constant k+ for the forward reaction and k_ for the

backward reaction. Thus I
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V AVB v
r(a,b,c) = k a Ab B - k-c . (3.5)

The precipitation rate was described in Section 2, and that

description leads to the following expression for p:

p(c,d) = 0 , if c < c* and d = 0 , (3.6)
= q(c-cS)+ , if c > c* or d > 0

Here q is a rate constant and the subscript + on c - cs de-

notes the positive part of c - c.
Since we have assumed that the reactions occur in the

tube occupying the region x > 0, we must specify the initial
conditions within the tube and boundary conditions at the end
x = 0. To correspond with Liesegang's experiment, we assume
that only B is present initially. Thus we require that

a = c = d = 0 , b - b0 at t = 0 , x > 0 . (3.7)

At the endpoint x = 0 we assume that A is kept at the concen-

tration a while B and C cannot leave the tube there. Thus0

a = a0, bX = c =0 at x = 0, t > 0 . (3.8)

In addition to these conditions, we require that a, b, c and

their x derivatives be continuous throughout the tube for

t > 0:

a, b,c,ab c continuous for x > 0, t > 0. (3.9)

The preceding equations constitute our mathematical for-
mulation of the theory of Liesegang band formation. The bands '

are the regions within which d(x,t) is positive after a,,

sufficiently long time. Thus the bands are defined by

d(x,-) > 0 (3.10)

This formulation is complete in the sense that the equa-

tions seem to have a unique solution. This solution deter-
mines exactly where the bands will be, the thickness of each

band, the time when each band starts to form, the concentra-
tions between the bands, etc. The solution will also show
whether or not bands do form, and it will yield the sets of
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parameter values for which they form. The solution can be

calculated numerically, but we have not calculated it.

Instead we ave first simplified the equations and then

analyzed the resulting problem.

4. REDUCTION TO A SIMPLER PROBLEM.

In order to simplify the theory presented in Section 3,

we shall proceed heuristically, making assumptions based upon

intuitive chemical considerations. Later on we shall indicate

how the same simplified theory results from a systematic

application of the theory of fast reactions and slow diffusion.

* Our first assumption is that the reaction term vAr in (3.1) is

negligible compared to the other terms in that equation. This

assumption is valid when the concentration of B is sufficiently

small. It yields

t=Dax .(4.1)
t A xx

Next we add vB times (3.3) to vC times 43.1) to eliminate

r and obtain

C b t + V B = VBbxx + vBDcxx - VB p(c,d) (4.2)

Then we assume that the reaction proceeds so rapidly that it

is in equilibrium, which yields

r(a,b,c) = 0 . (4.3)

We shall use (4.2) and (4.3) instead of (3.2) and (3.3). But

then we must replace the two boundary conditions b. = cx = 0

by the single condition that B, both free and contained in

C, cannot escape through the boundary,:

V D b + v BDcx = 0 at x = 0 , t > 0 . (4.4)

With these modifications the problem can be dealt with by

first solving (4.1) for a(x,t) with a(x,0) = 0 and a(O,t)=a o.

The solution is

a(x,t) = a erfc[x/(4DAt) ] . (4.5)

Then (4.3) can be solved for b in terms of a and c and the re-

sult can be used to eliminate b from (4.2) and (4.4). In this

way (4.2) becomes an equation for c in which d seems to occur.

.
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However both in the region where p = 0 and in the region where

p > 0, d does not occur in the equation for c. Thus the

entire problem can be reduced to one of determining c in each

of these regions. The boundary between the two regions con-

sists of the curve on which c = c* together with the upper

halves of the tangents to this curve where it becomes

vertical. Once c is found, d can be calculated from (3.4).

The reduction just described is carried out in detail in

the work of Keller and Rubinow [3], where the resulting equa-

tions are analyzed and solved approximately. Therefore we

shall not describe that analysis and its results. Instead we

shall present the theory of fast reaction and slow diffusion,

and show how it !an be used to derive the reduced problem in a

systematic way.

5. FAST REACTION AND SLOW DIFFUSION.

In many chemical systems, such as those considered in the

preceding sections, both chemical reactions and diffusion

occur, but at quite different rates. Often the reactions pro-

ceed much more rapidly than the diffusion. In such cases it

is possible to simplify the analysis of the process by taking

advantage of this difference in rates. One way of doing so is

to assume that the reactions have reached equilibrium or

completion at each point of space. Then the state at each

point is constrained to satisfy the condition that the reac-

tion rates vanish there. When this constraint is adjoined to

the reaction-diffusion equations governing the system, an over-

determined set of equations results. Chemical and physical

reasoning can then be used to delete some of the equations and

thereby make the system determined.

Instead of using this intuitive procedure, it is possible

to proceed in a systematic mathematical manner which we shall

now describe. The basic idea is to introduce into the equa-

tions a small parameter c which is the ratio of the time scale

for reaction to the time scale for diffusion. Then the

asymptotic expansion of the solution is sought for e near zero.

This expansion can be constructed either by the "two time"

method or by the method of matched asymptotic expansions.
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Both of these methods are utilized in [4]. Here we shall

indicate how to obtain the desired results via the latter

method.

Let us begin by considering the following system of

reaction-diffusion equations:

ut(x,t,E) = f(u,x,t,ct,e) + cD~u , (5.1)

u(x,O,E) = g(x) . (5.2)

Here u(x,t,c) is a vector of concentrations, temperature and

possibly other dependent variables, f(u,x,t,Et,c) is a vector

of reaction rates, heat production rate, etc. and D is the

diffusion coefficient matrix. The essential feature of (5.1)

is that the diffusion term contains the factor c, which is

small. We have also permitted f to depend upon all the

variables, and even to have a slow time dependence via the

argument Et. In the initial condition (5.2) the function g(x)

is given.

To obtain the asymptotic expansion of u for c small, we

assume first that it is of the form

u(x,t,c) - u01x,t) + CUM (x,t) + --. . (5.3)

We shall call this the initial layer expansion of u. We now

substitute (5.3) into (5.1) and (5.2) and set E = 0 to obtain

u0
(xt) = f(u

0
,x,t,O,0) , (5.4)

u0(x,0) = g(x) (5.5)

These equations describe the evolution in time of u0 at the

point x. Further terms in (5.3) can be found by considering

the coefficients of higher powers of e in (5.1) and (5.2), but

we shall not examine them. Instead we shall consider the

behavior of u 0(x,t) as t - -.
0

To this end, we assume that f(u ,x,t,0,0) has a limit as

t - , and then we may expect u 0(x,t) to have a limit also.

Let us denote it by u0 (x,-). Thus we assume that

lim u 0(x,t) = u 0(x,-) (5.6)

-- t7
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Then u (x,-) must satisfy the following equilibrium condition,

which results from (5.4):

f[u 0(x:. ),x,",0,0] = 0 . (5.7)

In general u 0(x,-) is not uniquely determined by (5.7), but it

is determined by the initial condition (5.5) and the reaction
0 0

equation (5.4). It is this limit u (x,-) of u (x,t) which

will be needed to determine the outer expansion of u, which we

consider next.

The initial layer expansion (5.3) is presumably valid for

fixed values of t as c - 0. In order to find the behavior of

L for long times of order t , we must construct another

expansion, called the outer expansion of u. In order to con-

struct it we first introduce the new time variable T = et and

consider u to be a function of T:

u(x,t,E) = v(x,T,£) T = Et . (5.8)

Then (5.1) becomes the following equation for v:

ev T(X,t,) = f(V,X,£- T,T,E) + £DAv . (5.9)

Next we assume that v has the expansion

v(x,t,E) = V0(xT)(x,t) + . . (5.10)

This is the outer expansion of u.

Both the inner expansion (5.5) and the outer expansion

(5.10) represent u. If there is a common region of validity

of the two expansions, as we assume, then in it they must be

asymptotic to one another. Thus we have in this region

U0 (x,t) + CUM1 (x,t) + v 0 (x,ct) + ev (x,Et)

+ .- . (5.11)

Suppose that (5.11) holds for t . Then by choosing

this value for t and letting c 0 in (5.11) we obtain

u0(x,.) = v (x,0) . (5.12)

This procedure for deriving (5.12) is called "matching" the

initial layer expansion and the outer expansion. The result

(5.12) yields the initial value of v
0  cerms of the "final"

0
value of u
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We next substitute (5.1) into (5.9) and set E = 0 to get

f[v 0 (xT),x,oT,0] = 0. (5.13)

This equation shows that v0 must lie on the equilibrium sur-

face (or manifold) defined by f = 0, but it does not determine
0

where v is on this surface unless the surface is a single

point. From (5.12) we know that at T = 0, v0 starts at the

point u (x,-). To find how it evolves as T increases, we

consider the terms of order - in (5.9), which yield the

following linear equation -or v(1):

fv [V 0(X,T),X,=,T,0V
(I

) = V
0  

DAV
0 

- f (5.14)

The gradient matrix fv in (5.14),which is the coefficient

of v(1), will generally be a singular matrix. Let us suppose

that it has k left null-vectors i k Then (5.14) is

solvable for v (1) only if the right side satisfies k

solvability conditions. They can be obtained by scalar multi-

plication of (5.14) on the left by each left null-vector.

This yields the k conditions

fv.0v(x,T) - DAv0 (x,) - f [v0 (x,T),x,-,,0]} = 0

j = 1,.... k . (5.15)

0This is a system of k equations that determine how v (x,T)

diffuses on the equilibrium surface upon which it is con-
0.

strained to lie by (5.13). The initial value of v is given

by (5.12). Thus (5.12), (5.13) and (5.15) determine the slow

diffusion of v 0(x,T), the leading term in the outer expansion

of U(X,E- T,C). The fast reaction is governed by (5.4) and

(5.5), which determine u 0(x,t), the leading term in the initial

layer expansion of u(x,t,E).

The system of equations (5.13) and (5.15), together with

the initial condition (5.12), are the results of our analysis.

We shall not examine them further here, nor shall we obtain

more terms in the outer expansion. These and other mattersare

considered in [4].
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6. APPLICATION TO THE THEORY OF LIESEGANG BANDS.

We shall now apply the theory of Section 5 to the equa-

tions of Section 3, which constitute our formulation of the

theory of Liesegang bands. To do so we first rewrite these

equations, introducing explicitly the small parameter E to in-

dicate the relative size of each term. In (3.1) for example,

the diffusion term is small of order c, say, but the reaction

term is supposed to be smaller. Therefore we shall assume it
2to be of order c . Thus we write (3.1) in the form

at = EDAaxx - E2VAr (6.1)

Similarly we write (3.2) and (3.3) in the form

bt = EDBbxx - vBr , (6.2)

c t = EDcCxx + Vcr - ep . (6.3)

The system (6.1)-(6.3) is of the form (5.1) with the

following identifications:

u =a, f = T-c V
r  ,

VCr -p

(6.4)
D 0 0
A

D 0 DB  0

0 0 DC

Thus the leading term of the initial layer expansion,
u= (a0 ,b0 ,c0 ), satisfies (5.4) which becomes

0
at = 0 , (6.5)

bt = -v r(a 0,b ,c 0 ) , (6.6)
t B 00

c = V r(a 0,b0,c) (6.7)
t C

From (3.7) the corresponding initial conditions are

a 0(x,0) c0 (x,0) 0 , b 0(x,0) = b0 , x > 0 . (6.8)

06w
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With these initial conditions and r given by (3.53, the solu-

tion of (6.5)-(6.7) is

a0(x,t) = c 0(x,t) = 0 , b 0(x,t) = b0 , x > 0 . (6.9)

Thus nothing changes in the initial layer, to this order.

To treat the outer expansion we shall write

u(x,t,c) = V(X,T,e) = ((X T,) (6.10)

Y(X,T,E)

Then by using (6.4) for f in (5.13) we get the single equation

r[a0 (XT),8 0(X,T),y 0(x,r)] = 0 . (6.11)

Thus the leading term in the outer expansion satisfies (4.3),

as we assumed in Section 4.

Next from (6.4) we compute fv at E = 0, and obtain

0 0 0

fv = (f a'f b'f) B -Bra -Brb -B rc (6.12)

vcra V Crb Vcrc

This matrix has two linearly independent left null-vectors

z = (1,0,0) , Z2 = (
0
'VC'vB) (6.13)

We also compute f at e = 0, which is given by

f {E: 0 (6.14)

We can now use each of the vectors tl and Z2 given by

(6.13) in (5.15) together with f given by (6.14) and D given

by (6.4). By using Z in (5.15), we obtain

0 = 0~a (6.15)
00

r A xx

This is just (4.1) of Section 4, with a replaced by a0 and t

replaced by T. Then by using Z2 in (5.15) we get

C VBY = vCDB x xyx - p(y 0,d) . (6.16)

MiMM



224 J. B. KELLER

This is exactly (4.2) with b, c and t replaced by 0 0, y0 and

respectively.

We have now shown how the simplified equations of

Section 4 follow from the equations for the outer asymptotic

expansion derived in Section 5. The corresponding initial

conditions are obtained by using (6.9) in (5.12), and they are

just those used in Section 4. An extension of the theory of

Section 5 is needed to derive the boundary conditions (4.4)

and a0(0,T) = ao , but we shall not present it here.

This completes the application of the theory of fast

reaction and slow diffusion to the equations of Section 3,

when they are written in the form (6.1)-(6.3). Of course that

way of writing the equations depends upon the parameters in

the problem. They must be such that the terms in these

equations have the indicated relative magnitudes.
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